Archive

Posts Tagged ‘Seismic Category’

Seismic Design For Fire Sprinkler Systems – Part 3a: Practical Example

May 29th, 2009

Part 3: Practical Example for Designing and Sizing Seismic Bracing and Components.

Continued from Seismic Design For Fire Sprinkler Systems – Part 2c: Clearance and Sway Bracing

Seismic Design Part 3

In the previous articles of this series I discussed the “if” and the “how” of seismic design for fire sprinkler systems. Let’s now take a look at an actual design and apply this knowledge in a practical example. For the sake of size and complexity, I’ll use a basic design; however, keep in mind the basics should be applied to each design no matter how complex it might be.

To begin, I recommend that you print out Figure 1 that will be referenced throughout. This is our basic system design. Using the step-by-step guideline that was provided in the first article, assume that this system falls into a seismic category C-F. Remember, if the building has been classified as an A or B it is exempt from seismic design.

Seismic 3 Figure1

It is the job of the engineer of record not only to designate the seismic category but also, if required, to provide the force factor that shall be used. This force factor now is going to be used to help in sizing the seismic bracing that is part of the overall seismic design. Seismic bracing is only one of the five design features that must be provided when doing seismic design for a system. While bracing is the most common, remember that the system must have rigid and flexible couplings located in specific locations, separation or expansion components at specific locations, and clearance provided as specific locations. Further, restraint for branchlines must be considered as well.

Using the example let’s first locate the lateral bracing that is required. (Remember, the requirements for lateral brace location are found in NFPA 13: Standard for the Installation of Sprinkler Systems Chapter 9.3.5.3.) The braces are spaced a maximum of 40 feet apart from each other with a brace required within the first 20 feet from each end of the run of main being considered. This is half the allowable distance between braces. Also, a brace must be located on the first piece of pipe from each end. This may sound confusing but considering that steel pipe comes in 21-foot, 24-foot, and 25-foot lengths, putting a brace on the first piece of pipe and within the first 20 feet of each end is not that hard to grasp.

However, let us say the first piece of pipe on a run of main is 14 feet long. Then the first brace has to be located within that first 14 feet. It cannot be located after that somewhere in the next 6 feet. Locate the braces on the cross main first. We will deal with the bulk main last. This main is 97 feet, 7 inches long from end to the last branchline on the end. If you divide 97 feet, 7 inches by 40 feet (maximum distance between braces) you can determine the minimum number of braces needed. Keep in mind that this is the minimum.

Several factors must be considered when determining how many braces actually are needed. For instance, if it is an exposed system with the piping near the roof deck or structure above, the bracing usually is spaced to its maximum as long as weight is not an issue, which we will see when we are sizing the braces. However, if the system is feeding pendants or is several feet lower than the structure, braces more than likely will need to be added to find locations to attach to the structure. When systems are hung lower other systems such as HVAC, electrical, and plumbing usually are above it, which makes it more difficult to locate a place where the braces can reach the top of the structure.

Hence: 97.58/40 = 2.4395. This means the minimum number of lateral braces required is 3. For the sake of example, consider this system to be unobstructed to structure. Our example ends up with something that looks like Figure 2. As you can see, the approximate locations fall into the allowances given in NFPA 13 Chapter 9.3.5.3. Again, if the starting pieces on each end where less than 20feet, the brace would need to be located somewhere on that first piece. Notice that the distances from the braces on each end to the middle brace both are within the 40 feet maximum.

Seismic 3 Figure 2

The second step is locating the longitudinal braces. The requirements for longitudinal braces can be found in NFPA 13 Chapter 9.3.5.4. Again, we will concentrate on the cross main first. As you may recall, longitudinal braces affect only the main itself and do not have anything to do with the branchlines. Also, size is not an issue. The cross main could be 8 inches or 1 inch. Either way, longitudinal bracing is required.

The spacing requirements for longitudinal bracing are double that of the lateral bracing. The maximum spacing is 80 feet with a brace required within the first 40 feet, which is half the allowable distance between braces. To find the minimum number of longitudinal braces divide 97 feet, 7 inches by 80feet. Hence: 97.58/80 = 1.21975. So a minimum two braces are necessary to meet the requirements of NFPA 13 Chapter 9.3.5.4. Locate the longitudinal braces on the example layout. Remember that there must be a brace within the first 40 feet of each end of the run of main. As you can see in Figure 3, two braces are adequate. Notice the amount of over spacing. This is advantageous because it allows the fitters plenty of distance to relocate the braces from one end to the other in case obstructions are encountered yet still stay within the limits allowed.

Seismic 3 Figure 3

Now that the lateral and longitudinal braces are located on this run of main, attention can be given to the bulk main feeding this cross main. As was previously described, lay out the lateral and longitudinal bracing for this run of main. It should look something like Figure 4. The overall length of this bulk main is 35 feet, 9 inches, so the minimum number of lateral braces required is one since it is less than 40 feet in overall length. The brace must be located within the first 20 feet of each end and must be on the first piece of pipe from each end.

Seismic 3 Figure 4

A common question raised here is what to do about the 11-foot, 9-inch piece of pipe. If we put one brace within 20 feet of the system riser symbol, we have nothing on the 11-foot, 9-inch piece on the other end. Technically speaking, that is correct; however, given the fact that the entire run is less than 40 feet and the brace is located within 20 feet of each end, it generally is understood that the amount of weight will not be such that one brace cannot adequately provide the support required. In such a case it is recommended to locate the brace as close to center as possible so the weight is distributed as equally as possible.

The required longitudinal brace is also a single brace since the overall distance of the main is less than 80 feet. This brace also can be located toward the middle of the run so the weight is distributed equally. When a lateral and longitudinal brace end up relatively near each other, it is usually cost effective to use bracing components that are made specifically to accommodate both braces. This is one example where the vocabulary gets diluted, so be careful. This is not a 4-way brace as described in Part 2 of this series. Rather, it is a combination brace that allows for support in both the lateral and longitudinal directions. Notice that the symbols are not crossed but rather two individual symbols side by side. This is done on purpose because it can be confused with the next brace that we are going to locate, which is a 4-way brace.

Continued at Seismic Design For Fire Sprinkler Systems – Part 3b: Practical Example

Seismic Design For Fire Sprinkler Systems – Part 2a: The Objective of Seismic Restraint

January 27th, 2009

Part 2: The Fundamentals of Seismic Design and the Design Features Involved.

Continued from Seismic Design For Fire Sprinkler Systems – Part 1d: A Word About Responsibility

Seismic Design Part 2

In the first part of this series, I discussed the “if” aspect of seismic design for fire sprinkler systems. The article reviewed International Building Code (2003) Section 1614 where the requirement for seismic design is made and each of the six exemptions to this requirement. Now it is time to discuss how to actually do this in your sprinkler system designs.

Let’s first review the process thus far. IBC Section 1621 references a document called ASCE 7, which is published by the American Society of Civil Engineers and used by structural and civil engineers for building component design criteria, among other things. ASCE 7 Chapter 9.6, “Architectural, Mechanical and Electrical Components and Systems,” is where the exemption for fire sprinklers is found if the Seismic Category as determined in IBC is an A or B. (Remember that fire sprinkler systems in Seismic Category C cannot be exempt from the seismic restraint requirement because they are considered life safety systems and therefore are given a higher rating than standard mechanical and electrical systems.) Having determined that seismic design is required, the “how” of the process begins.

A Word About Terminology
While almost everyone is familiar with the concept of sway bracing, it is important to standardize the language of this design process. For years specifying engineers and other entities have referred to seismic design by simply stating “provide earthquake bracing as required” or “sway bracing shall be provided as required in NFPA 13 [Standard for the Installation of Sprinkler Systems]” or “when bracing is required, it shall be installed per NFPA 13.”

I must stress that you immediately remove any such canned or standardized language in your company’s specifications. Such vague wording is very misleading. Seismic design for fire sprinkler systems includes several components in addition to bracing. While bracing is one of the most familiar methods, it certainly does not provide the necessary restraint for a system to meet the level of performance intended.

The Objective of Seismic Restraint
Understanding the purpose behind seismic design is the next step in the process. As with other aspects of sprinkler system design, plenty of gray areas make following the rules difficult. I believe that a designer must understand the overall objective behind a code or standard to better provide a solution for those times when the rules do not readily apply.

The objective of seismic design for a fire sprinkler system is twofold. The first goal is to minimize stresses in piping by providing flexibility and clearances at points where the building is expected to move during an earthquake. The second is to minimize damaging forces by keeping the piping fairly rigid when supported by a building component expected to move as a unit during an earthquake, such as a floor/ceiling assembly. The idea is to design a system that gives and moves as the building is designed to move. You want the system rigid where the building is rigid and flexible where the building is flexible. According to the standards, the
systems attached to the structure of the building all should work together as one unit.

That being the case, let’s look at each element required to make this happen. NFPA 13 Chapter 9.3 is where all the standard installation requirements for seismic design can be found. The chapter is organized by each required category: couplings, separation, clearance, and sway bracing.

Continued at Seismic Design For Fire Sprinkler Systems – Part 2b: Couplings and Seismic Separation